
STATES OF

BOYLE'S LAW

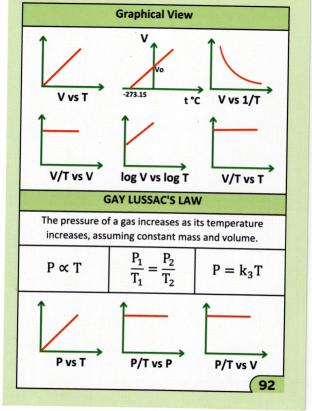
 $P \propto \frac{1}{V}$

 $PV = k_1$

 $P_1V_1 = P_2V_2$

Graphical View

CHARLES LAW


V x T

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

$$V_t = V_o + \frac{t^o C}{273.15} \ V_o$$

91

Avogadro's law

Equal volumes of all gases under the same condition of temp and pressure contain equal no of molecules.

$$V \propto n \text{ or } \frac{V_1}{n_1} = \frac{V_2}{n_1}$$

Ideal Gas Equation

From all the laws mentioned above PV = nRT

where, R is a gas constant with the following values.

-	8.314 J mol 1 0.0821 L atm mol K		1.98 cal mol ¹ K ¹	
	use (25/3)	use (1/12)	use (2)	
ı	Relation of P with donsity		D14	

Relation of P with density

PM = dRT

- No gas is perfectly Ideal.
- Ideal nature is achieved at High Temp, Low Pressure

Combined gas laws

For a fixed amount of a gas, if T, P and V changes from initial values P1, V1, T1 to Final P2, V2, T2.

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

Grahm's Law of Diffusion

- Rate of diffusion is number of moles of gas diffused per unit time. r = V/T = n/T
- The rate of diffusion or effusion of a gas is inversely proportional to the square root of its molar mass.

$$r_1 = \frac{1}{\sqrt{M_1}}$$

$$\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$$

Volume Flow rate

$$\frac{V_1}{V_2} \times \frac{t_2}{t_1} = \sqrt{\frac{M_2}{M_1}}$$

Moles flow rate

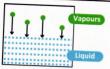
$$\frac{n_1}{n_2} \times \frac{t_2}{t_1} = \sqrt{\frac{M_2}{M_1}}$$

Dalton's law of partial pressure

- According to this law, the total pressure of a mixture of non-reacting gas is equal to the sum of partial pressure of each gas.
- Applicable for the mixture of non reacting gases.
- For a mixture of 3 gases A, B, C

$$P_T = P_A + P_B + P_C$$
 and $P_A = x_A \cdot P_T$

The law is not valid for the following mixtures.


$$CO + O_2$$
; $NO + CI_2$; $CO + CI_2$; $HCI + NH_3$; $H_2 + F_2$
 $NH_3 + CI_2$ (excess) $SO_2 + CI_2$; $NO + O_2$; $H_2 + CI_2$

Vapour Pressure

 The pressure exerted by vapours over the surface of liquid when liquid and vapours are in equilibrium.

Liquid ⇒ Vapours

Rate of Vaporisation = Rate of Condensation

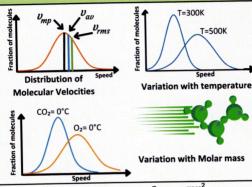
Factors Affecting Vapour Pressure

- Temperature
 - $VP \propto T$

Intermolecular forces
 VP α 1/IMF

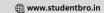
 $P_{\text{moist gas}} = P_{\text{dry gas}} + VP_{\text{H}_2\text{O}} \text{ (aq. Tension)}$

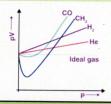
ary gas · · · H ₂ O (aq. 1elision)		
Kinetic Theory of gases	Kinetic Gas Equation	
NO force of attraction b/w gas molecules. Volume of gas molecule is negligible Motion is straight line and random (chaotic motions) Collision is perfectly elastic. Avg. KE Absolute T	PV = $\frac{1}{3}$ mNV ² rms • P in Pa • Volume in m ³ • Mass in kg • No. of molecules (N) • Root mean square velocity (m/s)	

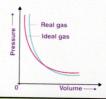

Average Kinetic Energy

K. E.
$$=\frac{3}{2}RT = \frac{3}{2}k_bT$$
Per Mole Per molecule

4


Maxwell Boltzmann distribution of speeds




$$f(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} v^2 e^{\frac{-mv^2}{2kT}}$$

RMS		Average	Most probable	
	$v_{rms} = \sqrt{\frac{3RT}{M}}$	$v_{av} = \sqrt{\frac{8RT}{\pi M}}$	$v_{mp} = \sqrt{\frac{2RT}{M}}$	

Relation (v_{mp} : v_{av} : v_{rms}) = 1:1.128:1.224

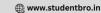
Deviation from Ideal Behaviour

$$P_{ideal} = P_{real} + \frac{an^2}{V^2}$$

$$V_{ideal} = V_{container} - nb$$

Equation of State

$$\left(p + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$


 $\mathbf{a} = \text{Force of attraction measure}$ $(\text{atm } L^2 \text{ mol}^{-2})$ $\mathbf{b} = \text{Excluded volume } (L \text{ mol}^{-1})$

Compressibility factor, Z

$$Z = rac{V_{real}}{V_{Ideal}} = rac{PV_{real}}{RT}$$
 Z is a factor to check the deviation of real gas from ideality $V_{real} < V_{Ideal} \Rightarrow Z < 1$

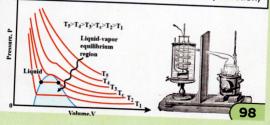
For Repulsion
$$V_{real} > V_{Ideal} \Rightarrow Z > 1$$

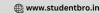
Boyles temperature
$$T$$
 at which Ideal = Real $T_b = a/Rb$ 97

Collision Parameters

Mean Free Path Average time between collisions

$$\lambda \propto \frac{T}{P}$$
 $\lambda = \frac{1}{\sqrt{2}\pi\sigma^2 N^*}$ σ = Collision diameter N^* = Number Density


Collision Frequency $z = \sqrt{2}\pi\sigma^2 V_{avg} N^*$


Liquefaction of gases

Critical Temperature	$T_c =$	8a 27Rb	Critical Volume	$V_c = 3b$	
Critical Pressure	P _c =	a 27b ²	Comp. Factor (Zc)	$\frac{P_c V_c}{RT_c} = \frac{3}{8} < 1$	

Condition for Liquification

- He < H₂ < N₂ < O₂ < CO₂ < NH₃ < H₂O (For Liquefaction)

